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Abstract: Sparse representation and nonlocal self-similarity play an important role and show better results in
image denoising. However, the methods based on sparse representation or nonlocal self-similarity tend to smooth
the image edge structures or generate some artifacts. To improve the performance of image denoising, in this
paper we propose an edge enhanced and nonlocal sparse representation (ENSR) model which combines Sobel
edge detection results, local sparsity and nonlocal self-similarity. We use the iterative shrinkage algorithm to solve
the l1-regularized ENSR minimization problem. The experimental results show that ENSR can better preserve the
edge structure and achieve a competitive PSNR performance compared with some existing methods.
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1 Introduction
Image denoising is an important part in the field of
image processing and low level vision. The goal is to
recover the latent clean image x from a noisy observa-
tion y, and the denoising problem can be formulated
as

y = x+ v, (1)

where v is additive noise. With the rapid develop-
ment of compressed sensing, many researchers used
sparse coding to solve image denoising problems [1–
9]. Generally, the sparse representation model as-
sumes that a signal x ∈ ℜ2 can be represented by x ≈
Dα where D ∈ ℜn×m(n < m) is a dictionary, and
most entries of coefficient α are zero or close to ze-
ro. Sparse representation using KSVD [1–3] to learn
an over-complete dictionary is a powerful method for
image denoising. Mairal et al.[4] proposed a method
for image restoration which unified sparse coding and
the self-similarities of natural images. [6, 7] exploited
the merits of the wavelet transform and sparse coding
to learn multi-scale dictionaries. Moreover, principle
component analysis(PCA) [8, 9] was also employed
as a dictionary learning method.

In recent years, the regularization terms in image
denoising problems usually fall into two categories:
local vs. nonlocal. However, nonlocal image rep-
resentation shows more remarkable performances -
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e.g., block-matching and 3-D filtering (BM3D) [10],
learned simultaneous sparse coding (LSSC) [4], non-
locally centralized sparse representation (NCSR) [5],
weighted nuclear norm minimization (WNNM) [11].
In addition, the methods associated with the nonlo-
cal self-similarity and sparse coding have received in-
creasingly more attention [4, 5, 11] which have broad-
ly encouraging results in both visual perception qual-
ity and quantitative measure. Moreover, Talebi et
al.[12] proposed a global denoising filter where ev-
ery single pixel was estimated from all pixels in the
image. Although many denoising algorithms achieve
great success, they often fail to preserve the edge
structure. Based on the above facts, we propose
an edge enhanced and nonlocal sparse representation
model for image denoising. We aim to enhance the
edge structures while removing noise.

Edge information is the most basic feature of an
image which contains important structure informa-
tion. [13] and [14] proposed some methods for image
denoising and edge enhancement based on the wavelet
transform. Gao et al. [15] proposed an edge detec-
tion method which combined soft-threshold wavelet
denoising and Sobel edge detection operator. Qiu et
al. [16] proposed an image denoising method which
could preserve edge structure partly. In this paper, we
choose Sobel operator to do edge detection which has
certain smoothing effect on the noise in images. We
add edge enhanced regularization term in the frame-
work of nonlocally sparse coding to increase the quali-
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ty of visual perception. The edge enhanced regulariza-
tion term avoids the problem of over-smoothed edge.
The main contribution of this paper is a better balance
between the enhanced regularization term and the s-
parse coding. To the best of our knowledge, this has
never been done in any previous works. The basic
idea of our ENSR is to treat local sparsity, non-local
self-similarity and edge information as peers and in-
corporate them into a unified variational framework.

The rest of the paper is organized as follows. Sec-
tion 2 describes the edge enhanced and nonlocal s-
parse representation for image denoising model and
its algorithm. Section 3 presents experimental results
and Section 4 includes some concluding remarks.

2 The Edge Enhanced Image Denois-
ing

We consider a patch-based image denoising method
and the noise is additive zero-mean white Gaussian
noise with variance σ2. Following the mathemat-
ical notation as [1], x ∈ ℜ2 is an image vector,
xi = Rix where xi represents the i-th image patch
of size

√
n ×

√
n, i = 1, 2, . . . , N , and Ri is the ma-

trix which extracts the image patch xi from x. Given
a dictionary D, we can use D to sparsely represent
xi = Dαi where αi is a sparse coding vector. The
whole image x can be reconstructed by a straightfor-
ward least-square solution which can be formulated as
follows [1]:

x = D ◦ α , (

N∑
i=1

RT
i Ri)

−1
N∑
i=1

RT
i Dαi, (2)

where α is the concatenation of all αi.
The performance of image denoising depends on

the choice of reconstruction item and regularization
term. In recent years, the mainstream image denoising
method based on sparse coding is usually modeled as

α̂ = argmin
α

{∥y −Dα∥22 + λ ·R(α)}, (3)

where λ is a positive parameter. In this paper, we join
an edge enhanced term in (3).

2.1 Sobel Operator
Compared with other edge detection algorithms, So-
bel operator has some smoothing effects when it en-
counters the random noise in images, and the edge
obtained by Sobel operator is bright and thick[15]. In
this paper, we use Sobel operator to do the edge detec-
tion because it is insensitive to noise compared with
other operators.

Figure 1: Edge detection results of Lena, Fingerprint,
and Hill.

Its digital gradient approximation equations are as
follows:

Gx = {f(x+1, y−1)+2f(x+1, y)+f(x+1, y+1)}
−{f(x−1, y−1)+2f(x−1, y)+f(x−1, y+1)},

(4)

Gy = {f(x−1, y+1)+2f(x, y+1)+f(x+1, y+1)}
−{f(x−1, y−1)+2f(x, y−1)+f(x+1, y−1)},

(5)

where Gx and Gy represent the X direction and Y
direction respectively. The magnitude of its gradient
is calculated according to g(x, y) =

√
G2

x +G2
y. We

use a threshold method to get the edge. Sobel operator
can also be expressed through its convolution template
operators

Tx =

−1 0 1
−2 0 2
−1 0 1

 , Ty =

−1 −2 −1
0 0 0
1 2 1

 .

Sobel edge detection results can be displayed in
the form of image as shown in Fig.1. Here we de-
fine a linear transformation, g(α;A) = Aα, which
can guarantee e = Aα, where A is a transformation
matrix like a dictionary and e represents the edge de-
tection result. That is to say, edge structure can also
be represented by sparse coding. We propose the fol-
lowing edge enhanced image denoising model:

α̂ = argmin
α

{∥y−Dα∥22+λ ·R(α)+µ∥e−Aα∥22},
(6)

where µ is a positive parameter.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Qian Wang, Ping Wang, Yuwei Zang

E-ISSN: 2224-3488 289 Volume 11, 2015



2.2 The Denoising Model
To make the edge enhanced denoising model more
effective, a good regularization term R(α) is cru-
cial. In recent years, local sparsity and nonlocal self-
similarity are two priors widely used in image denois-
ing. The regularization term in [4] and [5] which com-
bined local sparsity and nonlocal self-similarity has
brought better denoising quality. In this paper, we al-
so adopt the sparse nonlocal regularization term like
nonlocally centralized sparse representation [5] as fol-
lows:

R(α) =
∑
i

∥αi − βi∥1, (7)

where βi can be computed from the weighted average
of αi,q as follows:

βi =
∑
q∈Ωi

ωi,qαi,q, (8)

where Ωi is a set of patches which are similar to
xi, and αi,q is the sparse code of the q-th nearest
patch of xi within Ωi. ωi,q is the weight defined by
ωi,q = 1

W exp(−∥x̂i − x̂i,q∥22/h), where x̂i = Dα̂i

and x̂i,q = Dα̂i,q. h is a pre-determined scalar. Sub-
stituting Eq.(7) into Eq.(6), ENSR model can be for-
mulated as:

α̂ = argmin
α

{∥y −Dα∥22 + µ∥e−Aα∥22

+ λ
∑
i

∥αi − βi∥1}. (9)

2.3 Algorithm of ENSR
In order to solve the proposed model more effectively,
Eq.(9) can be rewritten as:

â = argmin
α

{

∥∥∥∥∥
(

y
√
µe

)
−

(
D

√
µA

)
α

∥∥∥∥∥
2

2

+ λ
∑
i

∥αi − βi∥1}. (10)

Let ynew = (yT ,
√
µeT )T , Dnew = (DT ,

√
µAT )T ,

as the optimization method shown in [17]. Eq.(10)
is equivalent to solving the following minimization
problem:

α̂ = argmin
α

{∥ynew−Dnewα∥22+λ
∑
i

∥αi−βi∥1}.

(11)
We use the same method as that in [5] and [9]

to construct the dictionary. The patches of image are
clustered into K clusters, and we learn a PCA dictio-
nary for each cluster. For a given patch, we first check

Algorithm 1: Image Denoising by ENSR
1: Initialize parameters λ, µ and δ;

initialize e by Sobel edge detection result;
let ynew = (yT ,

√
µeT )T ;

initialize x̂new = ynew.
2: Outer loop: for i = 1, 2, . . . , L

(1) Update Dnew via PCA and k-means;
(2) Inner loop: for j = 1, 2, . . . , J

-update x̂new:

x̂
(j+ 1

2
)

new = x̂
(j)
new + δ(y − x̂

(j)
new),

where δ is the pre-determined constant;
-update ν(l):

ν(l) = DT
newx̂

(j+ 1
2
)

new ;
-update a

(l+1)
i using Eq.(12);

-update λi,j by Eq.(13).
3: Extract D̂ from Dnew,

and image estimate x̂ = D̂α .

which cluster it belongs to, then choose the PCA dic-
tionary of this cluster to code it. We update αi by the
iterative shrinkage algorithm in [18]. α(l)

i (j) is the j-
th element of αi in the l-th iteration. We can update
α
(l+1)
i (j) by

α
(l+1)
i (j) = Sτ (ν

(l)
i,j − βi(j)) + βi(j), (12)

where ν(l) = DT
new(y − Dnewα

(l))/c + α(l), τ =
λi,j/c , and c is an auxiliary parameter. Sτ (·) is soft-
thresholding operator. The regularization parameter
λi,j can be computed by

λi,j =
2
√
2σ2

n

σi,j
, (13)

where σ2
n is noise variance. Let θi = αi − βi , and

then σi,j is the standard deviation of θi(j) which is
the j-th element of θi (More detailed explanations can
be found in [5]). When we obtain Dnew and α, the
desired dictionary D̂ can be got from Dnew. The re-
constructed image x can be formulated as follows:

x̂ = D̂α. (14)

A complete description of the ENSR algorithm is giv-
en in Algorithm 1.

3 Experiment
In this section, our ENSR method is evaluated and
compared with several image denoising methods, in-
cluding block-matching and 3-D filtering (BM3D)
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Figure 2: The twelve images for test. From left to right and top to bottom: Lena, Monarch, Barbara, Boat,
Cameraman, Couple, Fingerprint, Hill, House, Man, Peppers, Straw.

[10], the learned simultaneous sparse coding (LSSC)
[4], and the nonlocally centralized sparse represen-
tation (NCSR) [5]. In subsection 3.1, we introduce
the experimental parameter settings in our algorithm;
in subsection 3.2, we evaluate ENSR and compare it
with other methods on twelve commonly used test im-
ages as shown in Fig.2.

3.1 Parameter Setting
There are several parameters in our ENSR algorith-
m. The cluster number K is 55, and the constant δ =
0.02. The parameter

√
µ is 0.003 when σ2 6 30, and

we set
√
µ = 9 at higher noise levels to ensure good

performance. We set the patch size to 6×6, 7×7, 9×9
and 8 × 8 for σ ≤ 15, 15 < σ ≤ 30, 30 < σ ≤ 50,
50 < σ, respectively. When σ ≤ 50, the iteration
numbers K = 4, J = 3, or else K = 5, J = 3. The
process is iterated until convergence or the maximum
number of iterations is reached.

3.2 Experimental Results
We conduct a lot of experiments on twelve common-
ly used images (Fig.2). In the experiments, the noisy
image y is obtained by adding a Gaussian white noise
to the original image x.

As shown in Table 1, there are PSNR results of
four algorithms, and the best result for each image is
in bold at each noise level. From Table 1, ENSR out-
performs the other three methods including BM3D at
lower noise levels. Fig.3 shows the denoising detail-
s of BM3D,LSSC,NCSR,ENSR. It can be seen that
ENSR is very effective in reconstructing edge region-
s. When the noise level is high, BM3D has better P-
SNR results, but it can produce some visual artifacts

as shown in Fig.4. From Fig.5, all these algorithm-
s have a better visual quality when the noise level
σ = 20. As shown in Fig.6 and Fig.7, ENSR algo-
rithm has good effects on the texture images such as
Fingerprint and Straw. This reflects the good char-
acteristics of ENSR on edge structure and texture in-
formation. In summary, our ENSR method performs
better than NCSR, and achieves better PNSR perfor-
mance than BM3D and LSSC at lower noise levels.

4 Conclusion
In the paper, an edge enhanced and nonlocal sparse
representation(ENSR) model is presented for image
denoising. The Sobel operator is introduced in im-
age denoising method to enhance edge structure. We
use the iterative shrinkage algorithm to solve the
l1-regularized ENSR minimization problem. EN-
SR method combines local sparsity, nonlocal self-
similarity and Sobel edge detection. The experimental
results show that ENSR can better preserve the edge
structure and texture information. Our proposed EN-
SR method outperforms NCSR, and achieves better
PNSR performance than BM3D and LSSC at lower
noise levels.
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Figure 3: Denoising results on the Hill image (σ = 15): (a) Noisy image; (b) BM3D (PNSR = 31.86); (c) LSSC
(PNSR = 31.89); (d) NCSR (PNSR = 31.86); (e) ENSR (PNSR = 31.90).

Figure 4: Denoising performance comparison on the
Lena image (σ = 100): (a) original image; (b) noisy
image; (c) BM3D (PNSR = 25.95); (d) LSSC (PN-
SR = 25.96); (e) NCSR (PNSR = 25.66); (f) ENSR
(PSNR = 25.98).

Figure 5: Denoising performance comparison on the
Monarch image (σ = 20): (a) original image; (b)
noisy image; (c) BM3D (PNSR = 30.35); (d) LSSC
(PNSR = 30.58); (e) NCSR (PNSR = 30.69); (f) EN-
SR (PNSR = 30.76).
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Figure 6: Denoising performance comparison on the
Fingerprint image (σ = 15): (a) original image; (b)
noisy image; (c) BM3D (PNSR = 30.28); (d) LSSC
(PNSR = 30.31); (e) NCSR (PNSR = 30.46); (f) EN-
SR (PNSR = 30.51).
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